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TThe Positive and Negative Syndrome Scale 
(PANSS) has become the gold-standard 
assessment for examining the efficacy of 
antipsychotic medications in the treatment 
of psychotic disorders.1 The PANSS has 
demonstrated sensitivity to change in many 
clinical trials to date.2–7 Studies using the 
PANSS have used traditional univariate 
statistical approaches to examine treatment 
effects, demonstrating that several first- and 
second-generation antipsychotics reduce mean 
PANSS domain scores relative to baseline and 
placebo.8,9 These studies support the utility of 
the PANSS as an outcome measure in clinical 
trials by focusing on the change in each 
individual symptom. However, less emphasis 
has been put on the collective behavior of 
symptoms (i.e., the impact of the symptoms 
on each other) and how changes in the 
interdependency patterns of symptoms could 
influence an individual’s psychopathology 
(e.g., their resistance or responsiveness to the 
treatment, vulnerability to develop a comorbid 
disorder). In this regard, network science has 
gained a lot of attention in studying psychiatric 
disorders by considering them as a network 
of interacting components (symptoms) 
represented by G=(V,E), where V is the set 

of symptoms connected to each other by the 
set of edges E that represent the relationship 
between these symptoms (usually the 
statistical dependency between the measured 
intensity of symptoms). Representing the 
psychiatric disorders as networks allows us 
to analyze different patterns of interaction 
between these symptoms using various 
network properties. Network properties can be 
categorized as macroscopic, mesoscopic, and 
microscopic based on the type of information 
they provide.15 Macroscopic properties, such 
as network density, characteristic path length, 
and average clustering coefficient, provide 
information about the overall connectedness 
of the network as a whole. Networks with a 
higher density, average clustering coefficient, 
and lower average shortest path length are 
tightly connected, which, regarding symptom 
networks, means that the symptoms are highly 
interdependent. The mesoscopic properties, 
on the other hand, characterize how different 
subsets of nodes in the network are connected 
with each other. The nodes that belong to 
one community tend to have a stronger 
connection with each other while having a 
weaker connection with the nodes in other 
communities. This notion of communities 
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of symptoms is similar to symptom cluster 
analysis, in which a cluster of symptoms is 
identified using statistical analyses.28 However, 
symptom cluster analysis only focuses on 
the interdependency of symptoms within 
one cluster, whereas using mesoscopic 
measures, we can also analyze the interaction 
of cluster of symptoms with each other. 
Finally, the microscopic properties, such as 
degree centrality and closeness centrality, 
provide information about the role of each 
symptom and are useful for identifying the 
most influential symptoms in the symptoms 
interaction network. A summary of definitions 
and equations for all network measures is 
provided in Table 1.

One example of utilizing network analysis 
to examine psychiatric disorders is the study 

by Cramer et al,11 where the authors examined 
the vulnerability of patients to develop major 
depressive disorder (MDD) using symptom 
interaction networks, and suggested, based 
on their findings, that the individuals with 
more interconnected symptoms network are 
more vulnerable to developing MDD.11 Another 
example is the study by Borkulo et al12 in which 
they investigated the association between the 
symptom network structure of MDD patients 
with recovery from depression. According 
to their results, a more densely connected 
symptoms network is an indication of poor 
prognosis. Moreover, they identified fatigue/
loss of energy, feeling guilty, and psychomotor 
retardation as important symptoms in the 
persistent MDD network, which could be 
potentially the target of clinical intervention.12 

Finally, Beard et al13 also used network view 
to examine the relationship between anxiety 
and depression disorder. Their findings suggest 
that the strength of connection between 
depression disorder and anxiety disorders 
is higher than the strength of connection 
between depression-anxiety symptoms. 
Moreover, they identified the presence of a sad 
mood and worry as the most central symptoms 
in the network.13 According to these previous 
studies, antipsychotic treatments do not have 
a localized effect; rather, they achieve their 
goals via targeting a few central symptoms 
that have a spreading influence on a global 
symptom network.10–13 Although network-level 
changes in symptom dynamics have yet to be 
examined using the PANSS, the measure is 
ideally suited for this purpose given its wide 

TABLE 1. Summary of network measures for weighted networks
TYPE MEASURE DEFINITION INTUITION EQUATION STUDY

Macroscopic

Density Average network degree To what extent nodes of the 
network are interconnected Rubinov et al.16

Average shortest 
path length

Average shortest path length between 
all nodes

Level of information efficiency 
in the network Rubinov et al.16

Average 
clustering 
coefficient

Overall clustering in the network To what extent nodes tend to 
cluster together Watts et al.17

Modularity
Partitioning networks into a collection 
of discrete modules, each performing a 
specific task

To what extent nodes can be 
separated into distinct groups Blondel et al.18

Mesoscopic
Community 
detection A problem of finding maximal 

modularity in the network

To find the optimal community 
structure of nodes in the 
network

Blondel et al.18

Microscopic

Degree centrality Sum of the edge weights connected 
to a node

Level of connectivity of a node 
in the network Barrat et al.19

Closeness 
centrality

Distance of a node to all other nodes in 
the network

How quickly it reaches other 
nodes Freeman et al.20

i, j, u, and v = node (symptom) index; N = total number of nodes; wi j , wiu, wiv , wuv = weight between nodes i and j, i and u, i and v, u and v; di,j = 1/wi j = distance between nodes i and j; 
ki and kj = degrees of nodes i and j; ci and cj = the communities that nodes i and j belong to; ; the The δ-function δ(ci,cj) = 1 if ci = cj and 0 if ci ≠ cj.  
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range of item content and in-depth coverage of 
key symptoms domains (e.g., positive, negative, 
disorganized) relevant to psychotic disorders.

In the current study, we took a novel 
approach to examining the sensitivity of the 
PANSS to detecting treatment effects. Network 
analysis was used to examine antipsychotic 
treatment effects on publicly available archival 
PANSS data from the Clinical Antipsychotic 
Trials of Intervention Effectiveness (CATIE) 
study14 in treatment-responsive and treatment-
resistant patients with psychotic disorders. 
Prior CATIE studies demonstrated the efficacy 
of second-generation antipsychotics for 
improving symptoms on the PANSS using 
traditional univariate statistical approaches. A 
network science approach has several distinct 
advantages over traditional approaches. 
First, it allows for the observation of whether 
treatment-responsive versus treatment-
resistant patients differ in terms of how 
strongly interconnected their networks are at a 
macroscopic level. Since the macroscopic level 
characterizes the overall connectedness of the 
network, the more densely inter-connected 
networks confer greater overall risk for 
symptom exacerbation as, in such networks, 
most of the symptoms fall into a fewer number 
of clusters and the presence of some symptoms 
within each cluster increases the risk of 
occurrence for all other symptoms within that 
cluster. Alternatively, more inter-connected 
networks might be adaptive, facilitating 
rapid treatment response when medications 
effectively act on some symptoms, thereby 
improving the entire symptom presentation 
by spreading to the entire network. Second, 
network analysis allows for the determination 
of whether there are a few “clusters” of 
symptoms (i.e., communities with denser 
connections inside and fewer connections to 
the nodes outside the community) that are key 
players in treatment response, such that the 
treatment of a few key hub symptoms leads to 
improvement. Third, network analysis allows 
for the detection of symptom “centrality,” or 
identification of the symptom that is most core 
to a patient’s pathology (i.e., responsiveness or 
resistance to antipsychotics). The identification 
of the key symptom clusters or single central 
symptom might allow for the application 
of precision medicine designed to target 
the core features underlying an individual’s 
illness, rather than a broad approach that 

targets what is typically effective for a broad 
diagnostic category. Lastly, calculation of 
most of the network topological measures 
is straightforward, which, together with 
topographic maps (network representations), 
might enable clinical interpretation and 
a better understanding of the underlying 
psychopathology of individuals by clinicians. 

Given the novelty of the analytic method, 
we took an exploratory approach to examining 
the network architecture of treatment-
responsive and treatment-resistant patient 
groups in the CATIE trial. This included 
examining three aspects of network structure: 
macroscopic, mesoscopic, and microscopic 
properties. Macroscopic properties help us to 
understand the change of collective properties 
of the network connections as a whole after 
treatment. More specifically, it is more likely 
that an increase in density of the network 
connections after treatment is helpful for the 
improvement in overall prognosis of patients. 
Mesoscopic properties provide information 
about a subset of symptoms in the network 
(i.e., communities) where the reduction of 
the number of communities after treatment 
indicates the less segregated network and more 
integrated network. The microscopic properties 
(i.e., degree and closeness centralities) provide 
insights into the properties of individual 
symptoms in the network, which could help 
us identify individual symptoms that receive 
great impact from treatments (i.e., that 
experience a change in their centrality values) 
and could be able to spread the treatment 
effect via connections with other symptoms to 
the whole network. The Kolmogorov-Smirnov 
statistical test was used to examine whether 
there is a group difference (between treatment-
resistant and treatment-responsive) of 
centrality measures before and after treatment. 
Identifying central symptoms and examining 
the change in the centrality patterns of 
symptoms after treatment could help us better 
understand the patient’s psychopathology 
representation, which in this case is resistance 
or responsiveness to the treatment.15 

METHODS
Participants. Data were drawn from the 

baseline and end of Phase I visits of the CATIE 
study.14 Details of the CATIE study and primary 
results have been published previously.5,21 The 
purpose of the CATIE study was to conduct 

a randomized clinical trial comparing the 
effectiveness of first- and second-generation 
antipsychotic medications in a large and 
representative sample of patients with 
psychotic disorders across a 57-site study. A 
double-blind design was used for Phase I of 
CATIE: 1,493 patients were randomized to 
receive one of five antipsychotics (olanzapine, 
perphenazine, quetiapine fumarate, 
risperidone, or ziprasidone hydrochloride) and 
were evaluated at baseline and again after 18 
months or until treatment was discontinued. 
The sample evaluated for the current study 
included 1,049 patients who had complete 
Phase I data for all variables of interest. 
Of the 1,049 patients, 316 were deemed 
treatment-resistant and 733 were identified 
as treatment-responsive based on the efficacy 
failure outcome criteria of Phase I, which were 
defined as persisting severe symptoms despite 
adequate trials of the medications (inadequate 
therapeutic effect).21 Study inclusion/exclusion 
criteria have been published previously.21

Procedures. The current study was 
approved by local Institutional Review Boards 
at each of the 57 sites,  and written informed 
consent was obtained from all participants. 
Competency to provide consent and decision-
making was determined via the MacArthur 
Competence Assessment Tool for Clinical 
Research.22 A full list of measures used in the 
CATIE study has been published.21 The primary 
measure evaluated in the current study was the 
PANSS,1 which is a 30-item clinical rating scale 
that assesses the severity of positive, negative, 
and general psychiatric symptoms. In this study, 
the PANSS was administered by experienced, 
certified clinicians.29 CATIE PANSS raters were 
required to undergo a structured certification 
process that included initial training, initial 
certification, and then yearly recertification, in 
order to reduce drift and facilitate continued 
training. To pass the initial certification, each 
PANSS rater was required to code a series of 
recorded PANSS interviews and obtain an at 
least 0.70 Pearson correlation coefficient (PCC) 
when compared with the scores of expert 
raters. Certified raters were then required to 
maintain ongoing reliability via assessment 
every four months, during which time all 
raters were required to code a recorded PANSS 
interview and achieve a PCC of at least 0.70.29 
Although initial raters did not always assess 
at all time-points due to staff turnover, all 
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raters were held to this reliability standard.29 
A full description of the rater certification and 
training process for the PANSS is available in 
Swartz et al.29

Network analysis. Network analysis was 
used to examine the structural/topological 
properties of the PANSS symptoms network at 
baseline and 18 months follow-up of Phase I 
and for treatment-resistant and -responsive 
patients. First, we constructed a symptom 
network for each patient group at the baseline 
and 18-month follow-up time-points by 
calculating the association between PANSS 
symptoms using the absolute value of the 
partial correlations among symptoms. Partial 
correlation estimates the level of association 
between two random variables while removing 
the effect of other variables. It was calculated 
based on the residual scores of the regression 
analysis as follows: 

where X and Y represent variables (i.e. PANSS 
items), Z represents the set of controlling 
variables, e represents the residual scores 
obtained from the regression analysis, a and b 
represent the regression analysis parameters, r 
represents the correlation coefficient value,  
and  are the predicted values of X and Y 
estimated using regression analysis, and PCXY.Z 
represents the partial correlation value 
between variables X and Y while controlling for 
the effect of the variables in Z.

After calculating the pairwise partial 
correlation between all symptoms, we 
obtained the connectivity matrix, which is a 
mathematical representation of a network, 
where rows i and columns j are the nodes of 
the network, and each cell wi j denotes the 
connectivity between nodes (i.e., PANSS items) 
i and j. Since our networks are weighted, each 
cell has a value between 0 and 1, representing 
the strength of connection between two nodes. 
Thus, the nodes of our network represent 
PANSS symptom items, and the edges represent 

the absolute value of the partial correlation 
between two symptoms. After constructing 
symptom networks using the absolute value 
of partial correlations, we calculated network 
properties to capture the interaction between 
different PANSS items in the treatment-
responsive and treatment-resistant groups 
before and after treatment.

Network variables analyzed in this study 
included density, average shortest path length 
(characteristic path length), average clustering 
coefficient, modularity, closeness centrality, 
and degree centrality, which are defined as 
follows: Network density is defined as the sum 
of the link weights divided by the number of all 
possible links. The higher density of a network 
suggests that nodes of the network are tightly 
connected to each other. The network density is 
calculated as follows:16

where N represents the total number of nodes 
of the network, i and j represent nodes in the 
network, and wi j represents the weight of a link 
between i and j.

The average shortest path length is 
another useful network measure that aims 
at quantifying the efficiency of information 
transfer in networks. The average shortest path 
length is defined as the mean of shortest path 
lengths between all possible pairs of nodes in 
the network. A smaller average shortest path 
length indicates more efficient information 
transfer in the network. Average shortest path 
length is calculated as follows:16

where di j is the shortest path from i to j, and 
N is the number of nodes in the network. In 
weighted networks, the distance between two 
nodes is defined as the inverse of corresponding 
link weight.16 Therefore, the shortest path of 
weighted networks is based on the inverse of 
link weights.

The clustering coefficient is a network 
measure to quantify the extent to which 
nodes tend to cluster together.15 In other 
words, the clustering coefficient shows how 
well the neighborhood of one particular 
node is connected. The clustering coefficient 
ranges from 0 for the nonconnected 
neighborhood to 1 for the fully connected 

neighborhood (also known as a clique). 
The clustering coefficient of a node in a 
weighted graph is calculated as follows:

                  
where u, v,and i represent nodes in the 
network; ki represents weighted degree of node 
i; and W represents link weights in the network. 
The average clustering coefficient provides 
the overall clustering in the network, which is 
calculated as follows:17

where N is the number of nodes in the network; 
and CCi is the clustering coefficient of node i.

Many real-world networks tend to divide 
naturally into modules (also called clusters, 
communities, or groups). The strength of 
division of a network into modules is called 
modularity.5 Community detection is a problem 
of finding maximal modularity. Higher 
modularity of a network is an indication of 
dense connections within modules and sparse 
connections between nodes from different 
modules. Modularity for weighted networks is 
calculated as follows:18

                                                                                  
where wi j is the link weight between nodes i 
and j; ki and kj are degrees of nodes i and j; ci 
and cj are the communities that nodes to which 
i and j belong; and m is equal to

 .

The δ function δ(ci,cj) equals to one if ci = cj 
and 0 if ci ≠ cj. Finding the communities in a 
network can be formulated as an optimization 
problem. In this study, we used a greedy 
optimization method known as the Louvain 
method to find the optimal community 
structures.18

The degree centrality of a node in the 
weighted undirected network is also called 
a “strength,” which simply is the sum of the 
edge weights connected to a specific node. This 
simple measure provides useful information 
for identification of important nodes in the 
network and provides first clues about the 
structure of the network. The nodes with 
high degrees of centrality are known as hubs 
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and represent nodes that are connected to 
many other nodes in the networks.19 Degree 
centrality of a node for the weighted network is 
calculated as follows:

where N represents the set of nodes of the 
network and wi j represents link weight 
between node i and node j in the network.

The closeness centrality represents how 
much a particular node in the network is 
accessible to the other nodes in the network. 
Nodes with high degrees of closeness centrality 
can quickly access other nodes in the network. 
For example, in symptom interaction networks, 
any changes to the symptoms with high 
closeness centrality can quickly spread out to 
other reachable nodes in the network. Formally, 
the closeness centrality for weighted graphs is 
defined as:20

where N represents the number of nodes in 
the network and di j represents the weighted 
distance between nodes i and j.

We used a Kolmogorov-Smirnov test to 
examine whether the microscopic measures 
(closeness centrality and degree centrality) 
have a significant difference between 
treatment-resistant and treatment-responsive 
groups before and after treatment. In this 
study, macroscopic and mesoscopic variables 
cannot be analyzed for group differences 
because these variables provide a single value 
to describe the overall network structure/
properties and therefore cannot be used to infer 
statistics for the group difference of treatment 
resistant and treatment responsive patients. 
Nevertheless, these variables are essential to 
understand the overall network structure/
properties of the treatment resistant and 
responsive patients.

All analyses were conducted in Python 
programming language using the NetworkX 
package.23,24

RESULTS
Macroscopic analysis. We first analyzed 

the partial correlation-based network of 
treatment-resistant and treatment-responsive 

patients at the macroscopic level before and 
after treatment. Table 2 shows the macroscopic 
properties of constructed networks. The 
results indicate that the networks of the 
treatment resistant group were denser (i.e., 
the treatment-resistant group networks 
displayed higher density and average clustering 
coefficients as well as lower average shortest 
path length and modularity) as compared 
with the treatment-responsive group before 
and after treatment. However, the within-
group comparison of macroscopic properties 
indicates that density, average shortest path 
length, and average clustering coefficient of 
the symptom network were almost the same 
for the treatment-resistant group before and 
after treatment. On the other hand, in the 

treatment-responsive group, the density and 
average clustering coefficient were increased 
after treatment, while the average shortest 
path length and modularity were decreased. 
Thus, macroscopic level analyses suggest that 
the networks of treatment-responsive patients 
become more connected after antipsychotic 
treatment, whereas antipsychotics have no 
effect on global connectivity in treatment-
resistant patients.

Mesoscopic analysis. We analyzed the 
symptom networks at the mesoscopic level 
using the Louvain method, which is a greedy 
optimization method (a step-by-step approach 
where, at each step, the optimum decision 
is made based on the information available 
at that step) to find the optimal community 

FIGURE 1. Community detection (mesoscopic analysis) results. Clockwise from top-left: treatment-resistant baseline, 
treatment-resistant 18-month follow-up, 18-month follow-up treatment-responsive, and baseline treatment responsive. 
The nodes in the network represent the PANSS symptoms; the node colors represent detected communities by the Louvain 
method; and the edge width represents the strength of absolute value of partial correlation. The number of communities 
detected in the treatment-resistant group at baseline and at the end of phase 1 were 13 and 11 respectively, whereas 
the number of communities detected in treatment-responsive groups were 13 and 12 at baseline and the end of phase 
1, respectively. Community detection is a problem of finding maximal modularity. Higher modularity of a network is an 
indication of dense connections within modules and sparse connections between nodes from different modules. Finding 
the communities in a network can be formulated as an optimization problem. In this study, we used a greedy optimization 
method known as the Louvain method to find the optimal community structures.18 pos _ p1 = Delusions; pos _ p2 = 
Conceptual Organization; pos _ p3 = Hallucinatory Behavior; pos _ p4 = Excitement; pos _ p5 = Grandiosity; pos _ p6 
= Suspiciousness/Persecution; pos _ p7 = Hostility; neg _ n1 = Blunted Affect; neg _ n2 = Emotional Withdrawal; neg 
_ n3 = Poor Rapport; neg _ n4 = Passive/Apathetic Social Withdrawal; neg _ n5 = Difficulty in Abstract Thinking; neg 
_ n6 = Lack of Spontaneity and Flow of Conversation; neg _ n7 = Stereotyped Thinking; gps _ g1 = Somatic Concern; 
gps _ g2 = Anxiety; gps _ g3 = Guilt Feelings; gps _ g4 = Tension; gps _ g5 = Mannerisms and Posturing; gps _ g6 = 
Depression; gps _ g7 = Motor Retardation; gps _ g8 = Uncooperativeness; gps _ g9 = Unusual Thought Content; gps _ 
g10 = Disorientation; gps _ g11 = Poor Attention; gps _ g12 = Lack of Judgement and Insight; gps _ g13 = Disturbance 
of Volition; gps _ g14 = Poor Impulse Control; gps _ g15 = Preoccupation; gps _ g16 = Active Social Avoidance.



64
ICNS  INNOVATIONS IN CLINICAL NEUROSCIENCE  November-December 2017 • Volume 14 • Number 11–12

O R I G I N A L  R E S E A R C H

structure in the network (i.e., it examines 
clusters of highly interacting symptoms).18 As 
can be seen in Figure 1, the nodes (i.e., PANSS 
items) with the same color belong to one 
community and tend to have dense connections 
with each other and sparse connections with 
nodes of other colors (communities). Although 
the numbers of detected communities for the 
treatment-resistant and treatment-responsive 
groups were both 13 prior to treatment, the 
number of detected communities for the 
treatment-responsive group was lower than 
that for the treatment-resistant group after 

treatment (treatment resistant=11 and 
treatment responsive=12). Thus, mesoscopic 
level findings suggest that the symptom 
interaction network of the treatment-resistant 
group consists of less segregated communities 
after treatment as compared with that of the 
treatment-responsive group after treatment.

Microscopic analysis. We conducted a 
microscopic analysis of symptom networks 
to understand the behavior of single nodes 
(PANSS items) in the network. Figure 2 shows 
the closeness and degree centrality network 
measures at baseline and the end of phase 1 

for the treatment-resistant and treatment-
responsive groups. As can be seen in Figure 2, 
symptoms close to the red line did not change 
their centralities much between before and 
after the treatment; in order words, they were 
not remarkably affected by the treatment (i.e., 
the network shape was consistent before and 
after the treatment). On the other hand, there 
were certain symptoms that were farther from 
the red line (e.g., “Blunted Affect,” “Excitement,” 
and “Preoccupation”), which means that 
these were the symptoms that received a 
great impact by the treatment. Moreover, 
for the treatment-responsive patients, there 
was a general trend of symptoms going up in 
centralities (i.e., the symptoms were lining 
up slightly above the red line), which means 
that the network became more connected 
after treatment. This was not observed in the 
treatment-resistant patients; their symptoms 
behaved almost randomly before and after 
treatment.

Similarly, Figure 3 shows the network 
representation of closeness and degree 
centralities at baseline and the end of Phase 
I for the treatment-resistant and treatment-
responsive groups. The node colors represent 
the difference of centralities between baseline 
and the end of Phase I. The negative values for 
node color reflect the decrease of centralities 
from baseline to the end of Phase I, while 
the positive values represent the increase of 
centralities from baseline to the end of Phase I. 
Moreover, the node size represents the absolute 
value of changes in centralities before and 
after treatment (baseline to the end of Phase 
I). As can be seen in Figure 3, the centrality 
values for certain symptoms markedly changed 
after treatment. More specifically, in the 
treatment-resistant group, “Preoccupation” 
and “Hallucinatory Behavior” demonstrated 
the most noticeable change in centrality 
values after treatment, while, in treatment-
responsive patients, “Poor Rapport” had the 
most noticeable change in centrality values 
after treatment.

The Kolmogorov-Smirnov test was used to 
examine the group differences of treatment-
resistant and treatment-responsive groups 
in microscopic network properties. As can 
be seen in Table 3, there were no significant 
differences in the closeness and degree 
centrality of symptoms in the treatment-
resistant group at baseline and at the end of 

TABLE 2. Macroscopic properties of partial correlation based PANSS networks

MACROSCOPIC 
PROPERTIES

TREATMENT-RESISTANT TREATMENT-RESPONSIVE

BASELINE 18-MONTH 
FOLLOW-UP BASELINE 18-MONTHS

FOLLOW-UP
Density 0.15 0.15 0.13 0.14
Average clustering 
coefficient 0.06 0.06 0.04 0.05

Average shortest path 
length 10.11 10.25 13.18 12.32

Modularity 0.47 0.47 0.55 0.53

FIGURE 2. Microscopic analysis results. Clockwise from top-left: treatment-resistant/closeness centrality; treatment-
resistant/degree centrality; treatment-responsive/degree centrality; and treatment-responsive/closeness centrality. The 
graphs represent closeness and degree centrality network measures at baseline and 18 months follow-up for treatment 
resistant and treatment responsive groups. The x-axis and y-axis show the centrality values at baseline and 18 months 
follow-up, respectively. pos _ p1 = Delusions; pos _ p2 = Conceptual Organization; pos _ p3 = Hallucinatory Behavior; 
pos _ p4 = Excitement; pos _ p5 = Grandiosity; pos _ p6 = Suspiciousness/Persecution; pos _ p7 = Hostility; neg _ n1 
= Blunted Affect; neg _ n2 = Emotional Withdrawal; neg _ n3 = Poor Rapport; neg _ n4 = Passive/Apathetic Social 
Withdrawal; neg _ n5 = Difficulty in Abstract Thinking; neg _ n6 = Lack of Spontaneity and Flow of Conversation; neg 
_ n7 = Stereotyped Thinking; gps _ g1 = Somatic Concern; gps _ g2 = Anxiety; gps _ g3 = Guilt Feelings; gps _ g4 
= Tension; gps _ g5 = Mannerisms and Posturing; gps _ g6 = Depression; gps _ g7 = Motor Retardation; gps _ g8 = 
Uncooperativeness; gps _ g9 = Unusual Thought Content; gps _ g10 = Disorientation; gps _ g11 = Poor Attention; gps _ 
g12 = Lack of Judgement and Insight; gps _ g13 = Disturbance of Volition; gps _ g14 = Poor Impulse Control; gps _ g15 
= Preoccupation; gps _ g16 = Active Social Avoidance.
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Phase 1 visits; however, there were differences 
in the closeness centrality (p<0.09) and 
degree centrality (p<0.01) of symptoms in the 
treatment-responsive group at the baseline 
and end of Phase I visits. In other words, in 
contrast with the treatment-responsive group, 
the microscopic network properties of the 
treatment-resistant group did not change 
significantly from baseline to the end of phase 
I. Moreover, the between-group comparisons 
indicate that there were significant differences 
in closeness and degree centrality values of the 
treatment-resistant and treatment-responsive 
groups before and after treatment (Table 3).

DISCUSSION
The network view considers psychiatric 

disorders as complex systems consisting of 
many interacting components (symptoms) 
with some emergent behavior (i.e., resistance/
responsiveness to the treatment). Hence, 
within this perspective, the psychiatric 
disorders are more than just the sum of the 
symptom intensities. For example, even 
though there might not be a mean change 
on a certain symptom (i.e., PANSS item) as a 
result of treatment, this symptom could still 
play a critical role in the overall responsiveness 
of the patient to treatments because of 
its interdependency with other important 
symptoms. In this regard, conventional 
univariate statistical analysis cannot fully 
explain the treatment responsiveness of 
patients to antipsychotic medications. Hence, 
we used analytical tools of network science to 
explore the sensitivity of the PANSS in detecting 
treatment effects. Specifically, we examined 
changes in symptom networks following 
antipsychotic administration in treatment-
resistant and -responsive patients with 
psychosis who participated in the CATIE trial.

Overall, our results suggest that the PANSS 
is highly sensitive in detecting treatment 
effects from a network perspective. Given the 
rapid advances in applying network analysis 
to examine psychopathology and treatment 
effects,10,11 these findings are of considerable 
importance. The PANSS might be ideal not 
only for detecting whether an antipsychotic 
treatment is effective (i.e., via considering 
mean changes in symptom levels relative 
to baseline and placebo using traditional 
univariate statistics) but also for determining 

why it is effective from a network perspective 
(i.e., by determining whether a treatment 
increases or decreases global connectivity 
within an individual’s symptom network and 
identifying which symptoms are most central to 
treatment response).

There were also important implications 
for understanding how patients become 
treatment-resistant versus -responsive 
from a network perspective. Results of the 
macroscopic, mesoscopic, and microscopic 
level analyses revealed a consistent pattern 
of findings. Treatment-resistant patients 
demonstrated randomly fluctuating 
associations among symptoms regardless of 
whether they were receiving antipsychotic 
treatment. In contrast, treatment-responsive 

patients displayed an increase in network 
connectivity following treatment, such 
that improvement of certain key symptoms 
or clusters of symptoms (communities) 
precipitated improvements in global symptom 
presentation. Interestingly, the most 
central symptoms following antipsychotic 
administration in treatment-responsive 
patients were Blunted Affect, Excitement, 
and Poor Rapport. This finding suggests that 
when antipsychotics do have beneficial effects 
on these specific symptoms, this leads to a 
spreading effect and improvement in positive 
(i.e., hallucinations and delusions) and other 
symptoms as well (e.g., disorganization). In 
a sense, the positive symptoms that typically 
bring patients in for treatment might be 

FIGURE 3. Network representation of microscopic properties. Clockwise from top-left: treatment-resistant/closeness 
centrality; treatment-resistant/degree centrality; treatment-responsive/degree centrality; and treatment-responsive/
closeness centrality. These graphs represent network representation of closeness and degree centralities at baseline and 
18 months follow-up for treatment resistant and treatment responsive groups. Node colors represent the difference of 
centralities between baseline and end of phase 1; the node sizes represent the absolute value of changes in centralities 
from baseline to 18 months follow-up. The closeness centrality represents how much a particular node in the network 
is accessible to the other nodes in the network. Nodes with high closeness centrality can quickly access other nodes 
in the network. The degree centrality is the sum of the weights of edges connected to a node and represents the level 
of connectivity of a node in the network pos _ p1 = Delusions; pos _ p2 = Conceptual Organization; pos _ p3 = 
Hallucinatory Behavior; pos _ p4 = Excitement; pos _ p5 = Grandiosity; pos _ p6 = Suspiciousness/Persecution; pos 
_ p7 = Hostility; neg _ n1 = Blunted Affect; neg _ n2 = Emotional Withdrawal; neg _ n3 = Poor Rapport; neg _ n4 = 
Passive/Apathetic Social Withdrawal; neg _ n5 = Difficulty in Abstract Thinking; neg _ n6 = Lack of Spontaneity and 
Flow of Conversation; neg _ n7 = Stereotyped Thinking; gps _ g1 = Somatic Concern; gps _ g2 = Anxiety; gps _ g3 = 
Guilt Feelings; gps _ g4 = Tension; gps _ g5 = Mannerisms and Posturing; gps _ g6 = Depression; gps _ g7 = Motor 
Retardation; gps _ g8 = Uncooperativeness; gps _ g9 = Unusual Thought Content; gps _ g10 = Disorientation; gps _ 
g11 = Poor Attention; gps _ g12 = Lack of Judgement and Insight; gps _ g13 = Disturbance of Volition gps _ g14 = Poor 
Impulse Control; gps _ g15 = Preoccupation; gps _ g16 = Active Social Avoidance.
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secondary features in terms of treatment 
response to these other symptoms, which, 
when improved, spur improvements in positive 
symptoms. Why these particular symptoms 
would be so central is unclear, and future 
studies are needed to replicate and extend 
these findings by detecting pathophysiological 
mechanisms that allow for improvements in 
these symptoms to precipitate changes in the 
entire symptom network. Knowing that these 
symptoms are central suggests that adjunctive 
treatment with other types of medication (e.g., 
mood stabilizers, antidepressants, anxiolytics) 
might be an appropriate approach to facilitating 
rapid response in patients who will respond 
to antipsychotics. In contrast, treatment-
resistant patients had a different pattern of 
symptom centrality, with Suspiciousness/
Persecution, Hostility, Depression, and Passive/
Apathetic Social Withdrawal being the most 
central ones. These are more classic symptoms, 
suggesting that these features were core to the 
treatment-resistant patients’ pathology and 
unchanged by antipsychotic treatment. Their 
dense connections with other symptoms might 
explain why they are so resistant to treatment. 
Essentially, these patients might require more 
momentum to experience global symptom 
improvement, since all other symptoms 
hinge on the improvement of these positive 
symptoms. 

These findings extend prior work on 
antipsychotic treatment resistance in several 
ways. Prior studies indicate that factors 
such as obstetric complications, age of 
onset of psychosis, age of first antipsychotic 
treatment, premorbid functioning, substance 
abuse history, male sex, family history of 
schizophrenia, and number of hospitalizations 
predict treatment resistance.25,26 The current 

findings provided novel evidence that 
treatment response might best be considered 
from a network perspective, rather than 
conceptualizing individual symptoms or 
symptom domains (e.g., positive, negative, 
disorganized) as mutually exclusive entities. 
Antipsychotic treatment response appears 
to be the result of interactions among a 
range of interacting symptoms that traverse 
traditional symptom dimensions. Moreover, 
consistent with prior studies of treatment-
resistant schizophrenia, our microscopic 
analysis suggests that negative and general 
psychotic symptoms (e.g., excitement, hostility, 
depression) could be as important as positive 
symptoms (traditionally known as predictors 
of treatment-resistant schizophrenia) in 
better understanding the psychopathology of 
treatment-resistant schizophrenia patients.26,27

Certain limitations should be considered. 
First, we wanted our findings to be broadly 
applicable to the use of antipsychotics. We did 
not evaluate network dynamics resulting from 
individual antipsychotics in the CATIE study; 
however, this could be an important future 
direction because the antipsychotics examined 
in the trial do have some differences in the 
pathophysiological mechanisms they target. 
Second, the macroscopic and mesoscopic 
analyses do not allow for a statistical 
comparison of differences among treatment-
responsive and -resistant groups. In this study, 
this is due to the nature of data where one 
single value is obtained for the whole network 
from macroscopic and microscopic analysis. 
Nonetheless, the information obtained from 
these analyses is essential to gain insight into 
the network structure of psychotic disorders 
and subsequently develop appropriate fine-
grained analysis. Finally, our results are specific 

to the phase of illness studied in CATIE. Future 
studies should take a network science approach 
to exploring treatment response in the first 
episode and in prodromal participants as well. 
The current findings suggest that the PANSS 
might be an optimal measure for detecting 
treatment effects from a network perspective.
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